

Mathematics Tutorial Series

Integral Calculus #9

Integration by Substitution

Integration by substitution is really just learning how to change the variable.

Simple example:

$$\int e^{mx} dx$$

Change the variable to u where u = mx.

The new variable changes with respect to the old variable at the rate $\frac{du}{dx} = m$.

Write this as

$$du = m dx$$

or

$$dx = \frac{1}{m}du$$

$$\int e^{mx} dx = \int e^{u} \frac{1}{m} du = \frac{1}{m} e^{u} + C = \frac{1}{m} e^{mx} + C$$

Example 2

$$\int 2x \cos x^2 \ dx$$

Let $u = x^2$ so that du = 2x dx.

Substitute:

$$\int 2x \cos x^2 dx$$

$$= \int \cos u du$$

$$= \sin u + C$$

$$= \sin x^2 + C$$

Check, using the chain rule

$$(\sin x^2)' = \cos x^2 2x$$

Summary

- 1. Integration by substitution is a change of variable technique.
- 2. The goal is to make the integral simpler after the substitution.
- 3. Look for a part of the integrand that also has its derivative in the integrand: $u = x^2$ so that du = 2x dx.
- 4. You can always check an integral by differentiation.